If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2v^2+12v+16=0
a = 2; b = 12; c = +16;
Δ = b2-4ac
Δ = 122-4·2·16
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4}{2*2}=\frac{-16}{4} =-4 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4}{2*2}=\frac{-8}{4} =-2 $
| 4y+2y=8 | | s/12=-6 | | {-6n=3},n=40 | | 2(x+10)+5x=7x-20 | | 32=-y/7 | | 4y=32y-18 | | 8k^2=9k-8 | | 282=-y+14 | | 285-x=221 | | (y^2/2)=16 | | x^2−13x+4=-6x-2 | | -u+277=164 | | 240+0.25x=450 | | 8k-4=2(k+7) | | 7.1*x=90 | | y^2/2=16 | | 9v+14=5(v-2) | | 90*x=7.1 | | 5f+17=9f+1 | | 3+16=-9+k | | (t-25)(t+2)=0 | | 13v=64 | | 2+8+x=50 | | 4w+9=5w+4 | | 9.9/x=0.1 | | 7^x-5=7^x+2 | | 4u+40=12u | | x+(x*x)/2=10 | | 2|3x+4|-10=12 | | 3/x+16=4/48 | | 8g(4)=g+9 | | 36/d=2/3 |